A Theoretical Approach to Construct Highly Discriminative Features with Application in AdaBoost

نویسندگان

  • Yuxin Jin
  • Linmi Tao
  • Guangyou Xu
  • Yuxin Peng
چکیده

AdaBoost is a practical method of real-time face detection, but abides by a crucial problem of overfitting for the big number of features used in a trained classifier due to the weak discriminative abilities of these features. This paper proposes a theoretical approach to construct highly discriminative features, which is named composed features, from Haar-like features. Both of the composed and Haar-like features are employed to train a multi-view face detector. The primary experiments show promising results in reducing the number of features used in a classifier, which leads to the increase of the generalization ability of the classifier.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic classification of Non-alcoholic fatty liver using texture features from ultrasound images

Background: Accurate and early detection of non-alcoholic fatty liver, which is a major cause of chronic diseases is very important and is vital to prevent the complications associated with this disease. Ultrasound of the liver is the most common and widely performed method of diagnosing fatty liver. However, due to the low quality of ultrasound images, the need for an automatic and intelligent...

متن کامل

Topology modeling for Adaboost-cascade based object detection

Several important issues involved in Adaboost-cascade learning still remain open problems. In this work, several novel ideas are proposed for improved Adaboost-cascade object detection. The most important one is the novel Topology Oriented Adaboost (TOBoost) algorithm. TOBoost immediately minimizes the classification error of each selected feature, and thus enables the final detector to be more...

متن کامل

ADABOOST ENSEMBLE ALGORITHMS FOR BREAST CANCER CLASSIFICATION

With an advance in technologies, different tumor features have been collected for Breast Cancer (BC) diagnosis, processing of dealing with large data set suffers some challenges which include high storage capacity and time require for accessing and processing. The objective of this paper is to classify BC based on the extracted tumor features. To extract useful information and diagnose the tumo...

متن کامل

Analyzing new features of infected web content in detection of malicious web pages

Recent improvements in web standards and technologies enable the attackers to hide and obfuscate infectious codes with new methods and thus escaping the security filters. In this paper, we study the application of machine learning techniques in detecting malicious web pages. In order to detect malicious web pages, we propose and analyze a novel set of features including HTML, JavaScript (jQuery...

متن کامل

Towards Real-Time Traffic Sign Recognition by Class-Specific Discriminative Features

Real-time road sign recognition has been of great interest for many years. This problem is often addressed in a two-stage procedure involving detection and classification. In this paper a novel approach to sign representation and classification is proposed. In many previous studies focus was put on deriving a set of discriminative features from a large amount of training data using global featu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007